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1.0 INTRODUCTION

Wall interference effects are a limiting factor on the accuracy of data
obtained from transonic wind tunnel tests. C(lassical linear theory1 and

2=5

nmodifications to this theory provide an insight into the nature of these

errors. However, sufficiently accurate estimates for practical use are nat
obtainable from linear theory. Kempﬁ’? formulated a procedure that uses
nonlinear transonic computer codes to determine Mach number and angle-of-
attack corrections. Hurman8 made improvements in Kemp's formulation and
conducted a series of two-dimensional airfoil simulations to show that wall
interference corrections are possible for strongly supercriticel flows. Rizk
and Murman9 extended the approach of Kemp to practical three-dimensional
geometries. They developed a computer code, TUNCOR, which estimates wind
tunnel wall interference corrections. The purpose of this report is to
describe modifications to code TUNCOR that increase its accuracy and allow it
to be compatible with the AEDC 1T wind tunnel measurement system gecmetry.

In addition to Mach number and angle-of-attack corrections, the transonic
correction procedure used in code TUNCOR provides an estimate of the accuracy
of the correctieons. Lift, pitching moment and pressure measurements near the
tunnel walle are required. The correction procedure may be divided into two
steps. In the first step, the flow about the test model is simulated numeri-
cally using the pressure measurements near the tunnel walls as boundary
conditions. An inviscid transonic flow code is used for this purpose. 1In
this step the wing and tail angles of attack, qT,w and aT,t' are determined
such that the calculated lift and pitching moment of the simulated model are
equal to the measured lift and pitching moment, respectively. The angles of
attack qT’“ and u&’t will generally be different from the experimental values
ae’w andué't. This is due to the viscous effects present in the experiment but not
in the numerical simelation of the flow and to geometrical differences between
the test model and the simulated model. In the second step, the flow about
the model in free air is numerically simulated. Angle-of-attack corrections
and a free-stream Mach number correction are determined such that the calcu-
lated model lift and pitching moment match the experimental values and the
calculated Mach number difference on the model surface in the tunnel and free
air is minimized,

A summary of the correction procedure is given inm Figure 1. A detailed

description of the procedure is given in Ref. 9.
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l (Meco, Tew: @e 1)

Match calculated lift and pitching moment 1o
corresponding measured values.

model

(Mew- T w aT,t}

Match calculated free air wing and tail lift values
to corresponding calculated tunnel values.

Minimize difference between Mach numbers on

model surface in tunnel and free air. ;';
Ea,w = D M Ea't = 0 E
m;n Epm ;P

-~

IM Fm ] aF'WI aF't)

Calculate corrections
AM = MEco = Meoo

Bay =apw - aTw

Bay = apy - a1y

Apply corrections to data
Mioo = Mgoo + AM
af'w = aew+ Aaw

af't = ae’t + Aat

Figure 1. Correction procedure

in tunnel

in free air
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2.0 SUMMARY OF MODIFICATIONS TC CODE TUNCOR

The correction procedure requires the numerical simulation of the flow
about the test model. In code TUNCOR this simulation is achieved through the
numerical solution of the transonic emall disturbance equation. The formula-
tion upon which the code is based assumes that pressure measurements are made
on the boundaries of a rectangular parallelepiped with sides cleose to the
tunnel walls but outside the boundary layer region (see Figure 2), In the
first step of the correction procedure, the transonic small disturbance
equation is therefore solved subject to the boundary conditions applied on the
boundaries of the rectangular parallelepiped. A Cartesian ceordinate system
is vsed.

In the AEDC 1T tunnel, pressure measurements are made on a cylindrical
surface (see Figure 3). Conversion to cylindrical coordinates is therefore
necessary to allow proper numerical simulation of the tunnel flow subject to
the measured boundary conditions.

Code TUNCOR calculates the flow in the tunnel subject to Dirichlet
boundary conditions for the perturbation velocity potential ¢ on the side
boundaries. It is therefore necessary to convert the measured data into
boundary conditions that are acceptable by the code. Interpolation routines
are also added so that boundary conditions at the computational mesh boundary
points may be calculated.

Finally, impreved accuracy is obtained by replacing the transonic small
disturbance governing equation and the first-order boundary conditions by the
full potential equation and second-order boundary conditions, respectively. A
detailed descriprion of cthe governing equation and boundary conditions is

given in the following section.



Figure 2.

Geometrical configuration used in the coriginal TUNCOR code

9-98-41-003v
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Figure 3. Cylindrical surface on which pressure measurements are made
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3.0 GOVERNING EQUATIONS

3.1 FLOW GOVFERNING EQUATION

The flow is governed by the continuity equation

Ve(pg) = 0
or
) 3 ] _
5;-(9UR) * 3 (pv) + 32 (pwR) = @ {1)

where the velocity g is expressed in terme of the perturbation velocity poten-
tial function ¢ as follows:
g = V(X+¢)

and the density p for an isentropic flow is given by
.
1.2 ey | 71
p=|i1+rz—Hw(1-gg.):| (2)

The small disturbance assumption made in Ref. 9 allows expression (2) for p
to be expanded in terms of a truncated binomial expansion. When this
expansion is substituted into Eq. (1), the tramsonic small disturbance
equation results. The full expression for p given by Eq. (2) is used in the

present work,
3.2 MODEL BOUNDARY CONDITIONS
For a general body with a surface defined by
B(X,Y,2} = 0

the boundary condition specifying zero flow through the body surface is given
by

g*Ve = 0
This boundary condition may be expressed as

BYS 3Ys
v = URF + wR FT on ¥ = Ys(x,Z) (3)

10
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and
azs v 825
w=101U ﬁ" + R 3 on Z = Zs(x,Y) (4)

where the surfaces
Y = YS(X,Z) and 2 = ZS(K,Y)

specify s0lid boundaries.

It is convenient to apply boundary conditions on coordinate surfaces when
the problem is solved numerically. For surfaces that deviate slightly from
the coordinate surface

Y=YD

it is possible to make the following Taylor series expansien:

(pv) = {pv)

Y=Y Y=Y
o 8

alpv)
A AR _5‘!2—

+ o[('zs - xo}z] (5)
Y= Y

Using Eq. (3) and Eq. (1) to express the first and second terms, respectively,
on the right-hand side of Egq. (5), one gets

3
{pv) = o= |(pUR) (Y =~ ¥ )]
v =y ax[ s o IY=Y
0 3
+ 22 |(pem) (Y - ¥ )
3z 5 0 'Y=Y

+

2
0 [('1‘1i Yo)] (6)
For surfaces that deviate slightly from the coordinate surface

Z=2
o]

it is possible to make the following Taylor series expansicn:

{ pwR)

Z=12

(awk)|z= .
[+] -3

Cen oy puR)
(z zo) az Z=Zs

2
o [(zs -z) ] (73

+

11
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Using Eq. (4) and Eq. (1) to express the first and second terms, respectively,

on the right-hand side of Eq. (7), one gets

9
{pwR) .-z x [FDUR} (Zs - Zo)] ,Z - zs
o}
3
W [“’"’ (zg - zo’] lz - z
+ 0 [(z -2 )2] (8)
B a

The usual assumption that variations in the Z or Y directions are negligible
relative to variations in the X direction is made here. It is therefore
assumed that Y and 2 derivatives on the right-hand sides of Eqs., (6} and (8)
are OI{Ys - Y°)2] and o[(zs - 20)2]. respectively. The boundary

conditions are therefore

3
ey .y *3% [{wn) (Y, - yo)] |

o X = Ys
+ o[(Ys - Yo}z (9)
.2 .
(B - 5 = % [(pum (z, zol] .
- 8
+ 0 [(zs - z)? (10)

The usval small disturbance boundary conditions gre derived by making the

following Taylor serieas expansions:

v'Y -y, =vly . Y, +o(¥, - ¥ )

(WR), _, = (R}, ., +o0lz, -2)
o 8
and then substituting expressions (3) and (4) for v and w into the above

expansions after setting U = 1 and neglecting the last term on the right-hand
side of Eqs. (3) and (4). Therefore,

3y
V'Y =y "R 4 O(Ys - Yo) (11)
and
a9z
3
(wR)|, | 2, = (n «Jx—)lz -, +olz, -2) (12)
]

12
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Boundary conditions (11) and (12) have been used in Ref. 9; however, the more
accurate conditions {9) and (10) are used in cthis work.

In Ref. 9, a Cartesian computational mesh is used in the calculations.
The small disturbance boundary conditions for the wing and tail are applied on
planar mean surfaces in the usual manner. The body boundary conditions are
also applied on the planar surfaces of a rectangular parallelepiped (see

Figure 4). The boundary conditions at these surfaces are given by

3P(x,0) _ 3¢°(x,0) 35°(x,8) /38 a3
3N

I asPrg)/ae

where Sb(x,ﬂ) is the path length along the body cross—sectional contour at

a given x statiom, 5P(9) is the corresponding path length along the paral-
lelepiped cross-sectional contour, n is the coordinate in the direction normal
to the body contour, and N is the coordinate normal to the parallelepiped
contour {see Figure 5). Relation (13) between the boundary condition applied
on the rectangular parallelepiped and that applied on the body surface is
chogen to match the mass flux introduced by the two conditions. Let the body

cross~sectional contour at station x be defined by

r= rb(x.ﬂ)

The value of Bsb(x,ﬂ}lﬂﬂ can then be expressed as

asb(x,a) - £
ET] b
cos V
where
b _1_ b
) 2 T

and Tb is the angle between the body contour and the radial direction as
indicated in Figure 5. Similarly, if the parallelepiped cross-sectional

contour is defined by

r = tP(8)
then the value of 35P(0)/36 is expressed as

sPa) _ _fP
ae cos \.P

13
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Cross Section C

r X v
5 : /— — —” Cross SectionB
[} 7
P4
X
Cross Section A Ié. z

Plane of
Symmetry

Figure 4. Parallelopiped on which body boundary conditions are applied

14
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Parallelepiped
Cross Section

Body
Cross Section

Fipure 5. Body and parallelopiped cross-sectional contours
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where

u"=%-1"

and 7 is the angle between the parallelepiped contour and the radisal
direction as indicated in Figure 5. Boundary condition (13) applied at the

parallelepiped surface may then be rewritten as

ag(x,e,rp) - Bgﬁx,e.rb)'rb cos W (14)
aN on p \P
T cCDSs

As indicated in Figure 4, the rectangular paralleiepiped extends over the
length of the computational domain. Boundary condition {14) is valid, however,
only in the interval along which the body extends (i.e., between Sections B and
C¢). Beyond this interval, the right—hand side of Eq. (14) is zeplaced by zero.

The corregponding boundary condition formulatien in eylindrical
coordinates replaces the rectangular parallelepiped by a cylinder {see
Figure 6). Eq. (14) is applied in the body region between Sections B and C.

Here the boundary coadition reduces to

3¢(x.6,r°) ) b

b b -
¢ (x,8,r ) r
— —L_a_li_z__..._b {(15)

ra cos v

where T, is the radius of the cylinder (see Figure 7). 1If the body is
nearly axisymmetric, its cross-sectional contours will deviate only slightly
from circular cross sections and, therefore, cos \P will be approximately
equal to unity. In this case, cos vb may be replaced by 1 in Eq. {15).

Upstream of Section B and downstream of Secticn C the condition

3¢(x,B,ro)
T__.-[)
is applied.

The application of the body boundary conditions, in the manner described
gbove, on a parallelepiped or a cylinder modifies the problem that was
originally to be calculated. This formulation, however, does simplify the
numerical calculations and is to be viewed as a crude approximation allowing
the introduction of body effects into the problem without much complexity.
Refinements that better approximate the original preblem are possible and will
be briefly described below. First, however, a description of the modified

model that corresponds to the above formulation is given.

16
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Cross Section C

Cross Section B

Cross Section A

Plane of
Symmaetry

Figure 6. Cylinder on which body boumdary conditioms are applied
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Cross Section

Figure 7. Body and cylinder cross-sectional contours
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The application of the boundary condition

8¢(x,6,ro)

— = 0
upstream of Section B and downstream of Section C corresponds to the intro-
duction of a cylinder in these regions. Therefore, the flow cannot penetrate
the surface of the cylinder. This is in centrast to the original problem in
which the flow is not restricted upstream or downstream of the body. In the
body region, between Sections B and C, the new formulation corresponds to a
change in the original body shape. Im the new formulation, the body becomes
wrapped around the cylinder as indicated in Figure 8, This would indicate
that as the cylinder radius reduces its effects in the body region and outside
the body region also decrease.

Assuming that the body defined by

r= rb(x,ﬁ]

is nearly axisymmetric, then the formulation that includes the cylinder of
radius T, will modify the boundary in the body region so that it is given by

r = (x,0) =\/r§(x,e) .’

This formula indicates that, as T, approaches 0, the modified body approaches

the original bedy. Similarly, in the case of Cartesian coordinates, the modi-

fied body boundary is given by

y= ys(x,B) =y, +[1 frg(x,e) + ri(ﬁ) - rp(ﬁ)] cos VW

z = zs(x,ﬁ) =z, +[\/r:(x,9) + rﬁ(ﬁ) - rP(B)] cos W

Although net implemented in code TUNGOR, the following suggestions which
give a better appro;imation to the original problem are briefly discussed
here. In the case of Cartesian coordinates, the rectangular parallelepiped
may be eliminated upstream of Section B and downstream of Section C. 1In this
case, one will apply the body boundary conditions on the sides of the
parallelepiped in the body region., This will better simulate the original

body. Another suggeation is to eliminate the rectangular parallelepiped

19
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Cylinder

Computational
Body

r = Ryfix,6)

r = Rg(x,0

Figure B. Cross section of computational body

20
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upstream of Section B only. In this case, boundary conditions can be imposed
downstream of Section C to model the wake region. The same suggestioms apply
to cylindrical coordinates; however, an additional complication occurs in this
case. The governing equation in cylindrical coordinates is singular at the
axis and, therefore, cannot be used to find the solution there. In this case,
one may replace the cylinder outside the body region by a cylinder with a
small diameter to reduce its effects there, or else one would be required to
solve the governing equation on the axis in Cartesian coordinates while
solving it elsewhere in cylindrical coordinates. The modifications supgested
above will increase the accuracy of simulating the body; however, they would

also increase the complexity of selving the equations.

2]
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4.0 FINITE DIFFERENCE EQUATIONS

The solution of the governing equation subject to the specified boundary
conditione ia found numerically. Therefore, a mesh of discrete points
(xl,YJ,Zk) with mesh spacings AX, AY, AZ is defined in the

computational domain with

1<ix1
1<jxJ
1<k <K

All Neumann boundary conditions are applied on half-mesh coordinate surfaces
(i.e., ¥ = Yj+(1[2) or 2 = Zk*(IIZ)). We ghall refer to mesh points
neighboring boundary surfaces by boundary neighbor mesh points. Other mesh
points eway from boundarias are referred to as interior mesh points.

Discretizing Eq. (1) at the interior mesh point (i,j,k) leads to the
following finite difference equation:

1, L1,
[(pun)“'i'J’k - (pUR}"E’J"‘] / AX
.1 .1
+ [(M"J*‘i"‘ - (pvJ‘=J—z-"] / aY

.. 1 . . 1
+ [(purytsds®¥y _ (pr)l_’J’k-E]/AZ

= Q

This equation may be rewritten as

b 1, b L1
gi (ur)* Dok, %Y- ()37

b L1
+ ‘g'z‘ (pur)Tr B3 o (16)

b h b
(] d . -
where 3 * 3 ° Bz denote backward difference quotients.
The finite difference approximation te the governing equation at a mesh

point (i, j,k) neighboring the computational boundary

Y=Y
o

22
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i,j4(1/2),k

is given by Eq. (16). However, now (pv) in this equatiom is

replaced by the finite difference approximation te Eq. (9), where

Y = Yi'j’k +
o —

AY

[ X Lo

Similarly, the finite difference approximation to the governing equation at a

mesh point (i, j,k) neighboring the computatiomal boundary

Z=2
[+

is given by Eq. (16}. However, now (pwr)? 1,3,k 01/2) in this equation is

replaced by the finite difference approximation to Eq. {10), where

z =z, 1y
c -2

The finite difference approximation to the governing equation at a general

mesh peint {i,j,k) may be written as

ab 1 ik
—— "
X [WR“*"S{ °z)]
b 1 b 1
3 i, j+v5,k 3 i,j ke
t Iy (pv BY) '+ z(pwllﬁz) 2
= 0 an
where the value of u;+(1’2)’3' is zero unless the mesh point (X1+(1!2),Y3,Zk)
neighbors the computational boundary
Y=Y
0
in which case Y - 5 .
1 S TE R P
1+§’ -
% Y, - Y, ; )
R e
. 1+(1!2)
or the mesh peint (X Z } neighbors the conmputational boundary
Z=12
o

23
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in which case

Rs zs - zo k 1
i+l 3.k "R’ A2 » 2= zo ) Az
azzi’=
R Z -2z
5 _8 0 k _ 1
I fivA » 20 F zo 2 az

The values of BY and Bz are 1 except on computationzl boundaries normal to the
Y and Z coordinates, respectively, where they are zero.

Finally, writing Eq. (17) in terms of the perturbation potential ¢ with

U=

v

and making the transformatioms

E = E(X)
L= (Y
n=niz)

with the objective of uvsing a stretched mesh away from the aerodynamic model

(at the model £ = X, L =Y, n=2), the following is the resulting

equation
2® [ &5 & 14,3,k
[k () ormen]
b -~ 1
9 iyjHg,k
* [_Lﬂ;krh M;‘*y] 2
ab Epnz 5 1,3,k
a _z &8 e
+[3n EZ, ﬁ%] 0 (18)
< c [+

where EE', %0 ¢ 3T denote centered difference gquotients and E is the density
modified by the artificial viscoaity required for the stability of the

difference scheme.
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The above modifications have been introduced into computer code TUNCOR
(see the appendix), which predicts Mach number and angle—of-attack corrections
for wind tunnel models. The cede has been submitted to AEDC where it is

presently being tested.

25
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APPENDIX A
COMMENTS ABOUT COMPUTER CODE TUNCORC

Code TUNCOR {Ref., 9) has been developed to evaluate wind tunmnel wall
interference corrections for three-dimensional sircraft (wing-body-tail)
configurations. The modified version of this code (TUNCORC) allows the option
of using a cylindrical coordinate system in addition to the original Cartesian
coordinate option. Also, code TUNCORC allows the use of the full potential
equation with second-order boundary conditions in addition to the original
option of using the esmall disturbance equation with first-order boundary
conditions. Finally, code TUNCORC includes subroutines that transform the
measured pressure data {on either a cylindrical gpurface or planar surfaces) to
the correaponding potential function at the computational boundary for use in
solving the tunnel boundary value problem. The code evaluates Mach number and
angle-of-attack corrections by the theory developed in Ref. 9 and in the main
text of this report. Code TUNCORC includes a user's manual. The comments
given here are not intended to give a complete description of the cade;
hovever, they complement the user's manual included in code TUNCORC.

Code TUNCORG uses @ simple Cartesian {or cylindrical) computational mesh.
The mesh point coordinates are (xi, Yj, zX) where

i=13,2,...,1

3=, 2, . ..,

k=1,2, . .., K
The ecomputational mesh is uniform inside a rectangular parallelepiped {or
cylinder) enclosing the model, OQutside the parallelepiped (or cylinder), the
mesh is stretched. The model surface boundary conditions are applied on half-

i+(1/2) or ¥ = Yj+(1,2) or Z = Zk+(1]2)).

This requires a number of modifications to the input pgeometrical model config-

mesh planar surfaces (i.e., X = X

uration. In other words, due to the simplicity of the computational mesh, the
flow is penerally computed about & modified model that differs slightly from
the input model. A discussion of the nature of these modifications is given
in this appendix. .

The user has the freedom to specify the mesh spacings AY and AZ. The mesh
spacing AX, however, cannot be arbitrarily specified if the sweep angle of

the wing leading edge ¢b is nonzero. The mesh spacing AX is restricted to

A7
Ax=;-—tan¢w s =1, 2, « . .
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This restriction on &X allows the wing leading edge to pass through the mid-
point between neighboring mesh points in the X direction as shown in Figure A-1.
In the case of a leading-edge sweep angle of zero, the user may specify AX.
Once AX is determined, the tail leading edge is restricted to one of the

following sweep angles.
¢£=tan_1 (n—ﬁ-%), n=0,1,2, ...

Therefore, the code will adjust the input sweep angle 6 to the closest
allowable value ¢ The tail is also displaced in the Z direction so that its
base lies on the parallelepiped (or cylindrical) surface on which the body
boundary condition is applied (see Figure A-1). This parallelepiped is speci-
fied by the user; however, the parallelepiped also is modified so that its
planes lie at the mid-distance between two neighboring mesh planes.

As part of the output, the code prints any adjusted value and the corres-
ponding input value.

The input data are ghown below for the calculated example. In this
example, all dimensions are evaluated in inches. The user, however, has the
freedom of choosing the length units. Pressure measurements in the wind
tunnel are given in the input data in terms of the correspending pressure
coefficients. The measured lift XLFTE and the measured moment XMOME are
normalized by the total pressure, so that XLFTE and XMOME have the dimensions
{unit length}2 and (unit 1ength)3, respectively. The model 1lift
normalized by the total pressure is given by

ask ds
1

"Ult"r
]

X
©  model (1 + I:- 2)"‘—1
surface

while the model lift normalized by Pl is given by

X n*k dS§
- y1 1 - n
L (1* 7 "i) f L
o U v M 1 2} ¥1
¥ - wodel |1+ EL2) T
surface

The first expression is used in the code since it is independent of Eree-stream
conditions (M,).
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Figure A-1. Input and computed configurations
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i o 1D = [l =

-

X3¥»2

NOMERCLATURE

Ly aPi®) — L, g

Le,d

mT,d{pi¢) B me

me,d

f(HF - )% as

r

j_H% ds
bp o (230 = Ly o (pi®)
Ly o(p5®
Lp o(Bi®) - Ly (g9
LT,H(E;¢J

unit vector vertically upward

11ft/Pu
lift
pitching moment about the axis x = xmfPo

Mach number

unit vector normal to model surface

- (“r,w‘ c“.l'.t]

(HFN' qF,w' uF,t)

total pressure
velocity normalized by free-stream velocity magnitude

{1 y Cartesian coordinates
Ir » cylindrical coordinates

perturbation velocity components normalized by free-stream
velocity magnitude in X,Y,Z directions

1 +u

Fa
velocity component in the X direction

Cartesian coordinate system

30



Ac

e © Tr o

— e ——

cylindrical coordinate system
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X coordinate of axis about which the model pitching moment is measured

X
y » Cartesian coordinates
B + ¢ylindrical coordinates
z s Cartesian coordinates
r » eylindrical coordiates

angle of attack
ratio of specific heats
Mach number correction

angle-of-attack correction

density normalized by free-stream density

density

perturbation velocity potential for the tunnel flow

perturbation velocity potential for the free—smir flow

Subscrizts

d

model

measured quantity or experimental condition

corrected condition

calculated quantity for the model in an inviscid free-air flow

Mach number
model surface

tail

calculated quantity for the model in an inviscid tunnel flow

wing

undisturbed condition
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